Enhancing IC Reverse Engineering through Inter-layer Connectivity-Aware Image Inpainting

Jofre Pallarès and Raúl Quijada jofre.pallares@csic.es HARRIS 2024 Workshop, Bochum. March 19th 2024

www.imb-cnm.csic.es

Contents

- The IMB-CNM
- Reverse Engineering at the IMB-CNM
- Image Inpainting in RE
- Inter-layer Connectivity-Aware Image Inpainting
- Conclusions

The IMB-CNM

Our institute

- The **IMB-CNM** belongs to **CSIC**, the main public research agency in Spain
- Largest institute in Spain dedicated to Micro and Nano technology research
- Located inside UAB university campus at Bellaterra, close to Barcelona
- Founded in 1985
- ~ 200 staff

- 1.500 m²
- class 100-10.000 (ISO 5-7)
- 6-inch wafer process
- >150 process tools
- CMOS and 'free' lines
- Staff :~40

Reverse Engineering at the IMB-CNM

- Centre Nacional de Microelectrònica MB COSIC
- Late 80s: Service starts doing physical characterization of CNM's Cleanroom process
- ~1995: Merging with CAD services, it starts reversing other technologies, first for acquiring know-how, later as an external service
- 2003: Starting reverse engineering of ICs (analog & digital)
 - most engineers come from design
- 2010: Starting software automation for complex digital IC reversing process
- **2020**: First participation in a European project on security
- Current offer of external services:
 - Sample preparation for visual inspection
 - Failure Analysis
 - Patent Protection
 - Security Audits

- +20 years experience in digital IC reversing
- All process steps performed at IMB-CNM
- Many steps have a high degree of automation:
 - Image acquisition
 - Image stitching
 - Layer-to-layer alignment and distortion correction
 - Image segmentation
 - Device recognition
 - Std. cell identification

GDSII-X: Our software tool

 +10 years of development but in constant evolution

- Versatile tool
 - Image stitching
 - Layer-to-layer alignment
 - Distortion correction

GDSII-X: Our software tool

- AI-based segmentation
- Design layout segmentation
 - U-Net based
 - polygon simplification
- Memory extraction
 - fuse & ROM
 - grid distortion compensation

Gate extraction

- Gate identification procedure:
 - 1. Transistor identification using GDS data and standard EDA tools
 - 2. Computation of a custom topological descriptor
 - Each gate topology has its unique descriptor!
 - 3. Fast comparison to an extensive gate topology descriptor database
- Insensitive to technology scaling or device sizing and multiplicity
- Only have to deal with new unknown topologies
 - New topologies found decrease, while database increases

Image Inpainting in RE

Design Reconstruction Errors

Incional de Microelectrònica

- Multiple sources of errors:
 - sample preparation
 - SEM artifacts
 - stitching errors
 - dust
- Design extraction errors should be fixed as soon as possible
 - error correction is one of the most timeconsuming tasks in IC RE
- **Dust** errors are very difficult to detect
 - ERC and DRC-like checks
 - IA models (dataset difficult to generate)

• HARRIS 2023: Very Interesting presentation (Kudos to **Cheng Deruo** et al.)

JOINT ANOMALY DETECTION AND INPAINTING FOR MICROSCOPY IMAGES VIA DEEP SELF-SUPERVISED LEARNING

Ling Huang, Deruo Cheng, Xulei Yang, Tong Lin, Yiqiong Shi, Kaiyi Yang, Bah Hwee Gwee and Bihan Wen*

School of Electrical & Electronic Engineering, Nanyang Technological University, Singapore.

Image inpainting

Inter-layer Connectivity-Aware Image Inpainting

- IDEA: Use inter-layer information to perform the inpainting!
 - Information recovery through node-vias inter-connections
- Triplet Images for dataset generation
 - Upper-Mid-Lower Layers

- Triplet Images
 - ⁻ IDEA: SWAP RGB Images channels gray-scale images from different layer levels.
 - For instance:
 - Si-Poly-M1, M2-M3-M4, Empty-Si-M1
 - [−] Empty \rightarrow Black Images
 - It is required a precise inter-layer alignment
 - Layer Stitching & Distortion Correction
 - Inter-layer alignment → Mosaic Warping
 - Path Image Size → 256 x 256 pixels (Architecture Input)

• Based on Pix2Pix Generator \rightarrow Baseline U-Net (Encoder-Decoder with skip connections)

- Self-Supervised Learning Task
 - Given an image, mask a region
 - 128x128px mask
 - Network must reconstruct it
 - It uses current layer spatial information
 - Inter-layer information
 - Evaluate the reconstruction
 - Use the original image (without masking)
 - Compute Mean Square Error Loss
 - Update network's weights
 - Continue with the next iteration

- Dataset distribution:
 - Training 90% Validation 5% Test 5%
 - M3 Layer: 5688, 315 and 315 patch images (from only 90 original 4Mpx SEM images)
- Computational cost:
 - NVIDIA GeForce RTX 4060Ti
 - 12 hours approx.
 - 60 epochs approx.
- Architecture summary:
 - Total params: 54,425,859
 - Trainable params: 54,414,979
 - Non-trainable params: 10,880

How reconstruction works

original

original

inpainting mask

original

inpainting mask

predicted

original

inpainting mask

original

inpainting mask

predicted

• Single Vs Multiple

Input Image

Ground Truth

Ground Truth

Predicted Image

Predicted Image

Multiple

• Single Vs Multiple

Single

Input Image

Input Image

Ground Truth

Ground Truth

Predicted Image

Predicted Image

Multiple

• Single Vs Multiple

Single

Ground Truth

Ground Truth

Predicted Image

Predicted Image

- BAD Reconstructions
 - Unsupervised dataset \rightarrow We need to model all types of structures!

Input Image

Predicted Image

Single

Multiple

Predicted Image

- Anomaly Detection
 - Evaluate the reconstruction error to detect anomalies \rightarrow Poly Test Set
 - Reconstruction errors are identified as anomalies

Conclusions

- Inter-layer information is <u>essential</u> to properly recover the information
- Simple Deep Learning Architecture
 - It is compulsory, if we want to deploy it and used by non-expert users
 - User must be able to train the network → Easiness of **convergence** (GANs are not)
 - Required dataset does not need to large (less than 100 SEM images!)
 - Self-supervised task \rightarrow Easy to generate the dataset (No human annotation)
- **Triplet dataset** images generation could be difficult
 - It requires a good inter-layer alignment
 - In entails **stitching** and **distortion** correction of the stacked layers

Conclusions

- Reconstruction texture is still quite blurry
 - Experimenting with **Diffusion Networks** but a **larger dataset** is required...
 - Difficult to use by non-experts
 - But it has **enough quality** for our **segmentation** model (ultimately the main goal)
- Inpainting results supervision is mandatory
 - Some reconstructions cannot be reliable (statistic layer modeling)
- Tested for Anomaly Detection
 - If we evaluate the reconstruction, we could try to detect anomalies.
 - Highly dependent to layer complexity (upper Metals a lot easier than Poly)
 - All the reconstruction errors will be labeled as anomalies, high success rate needed!

Thanks for your attention

further questions to Raul Quijada:
<raul.quijada@imb-cnm.csic.es>

