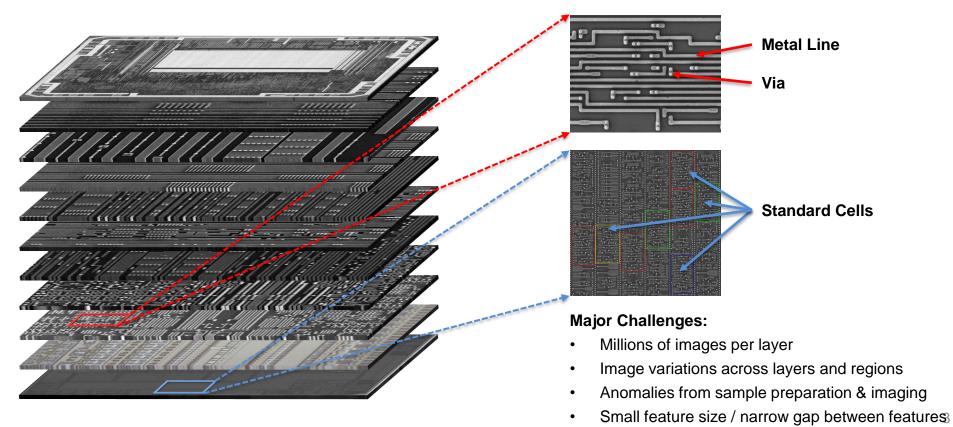
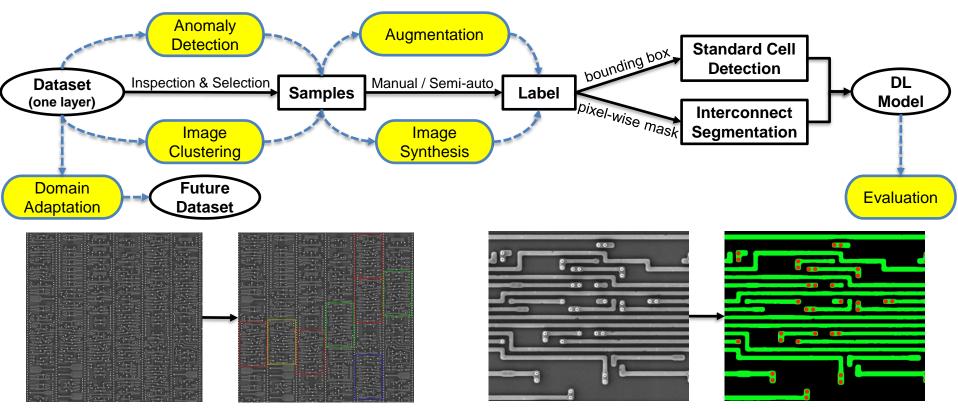


Integrated Circuit Mask-GAN

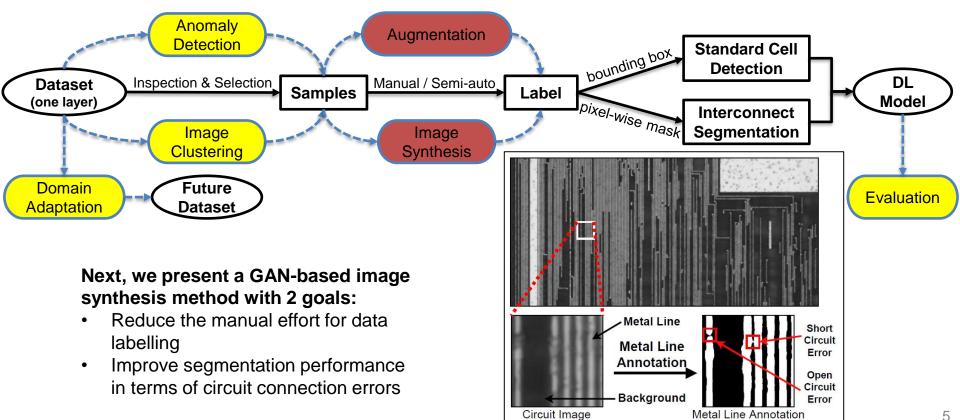
Speaker: Tee Yee Yang


For HARRIS, Mar 2024

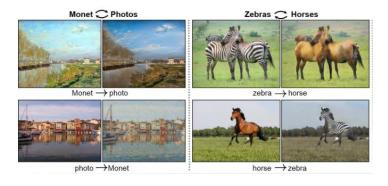

Outline

- Background: Microscopic IC Image Analysis
- Deep Learning based IC Image Analysis Framework
- Integrated Circuit Mask-GAN (ICMG)
 - Background and Intuition
 - Methodology
 - Experimental Results
- Conclusion

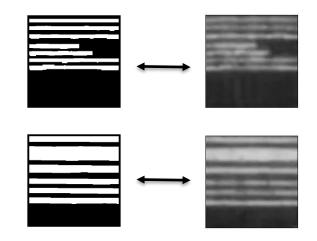
Introduction to Microscopic IC Image Analysis


Deep Learning (DL)-based Image Analysis Framework

Standard Cell Detection in Poly Layer

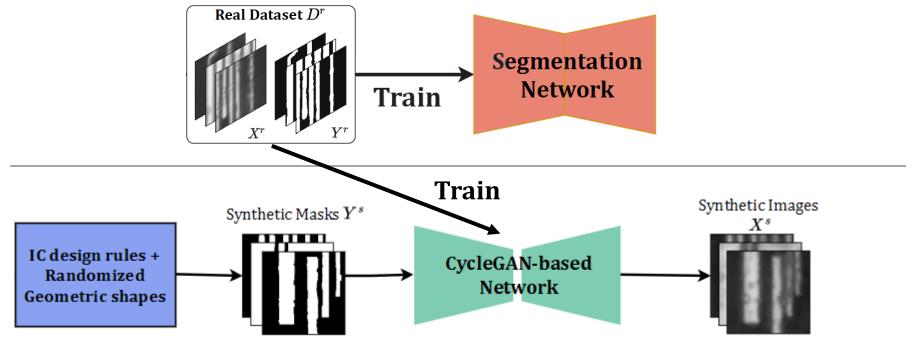

Interconnect Segmentation in Metal Layers

Deep Learning (DL)-based Image Analysis Framework



Integrated Circuit Mask-GAN: Background and Intuition

Image to Image Translation


Why not do this for IC images?

Isola, P., Zhu, J. Y., Zhou, T., & Efros, A. A. Image-to-image translation with conditional adversarial networks. In IEEE CVPR 2017 (pp. 1125-1134).

ICMG: Methodology

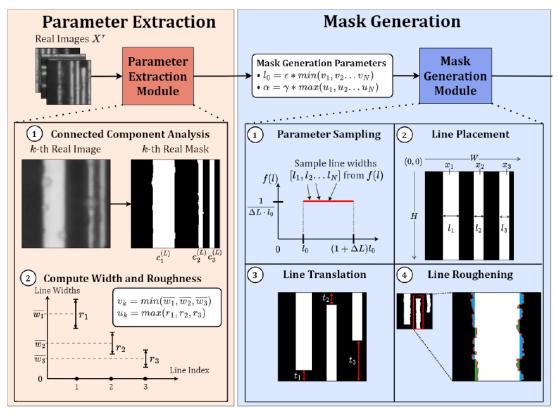

Conventional Fully supervised learning

Image Synthesis

Tee, Y. Y., Cheng, D., Shi, Y., Lin, T., & Gwee, B. H. (2023). Integrated Circuit Mask-GAN for Circuit Annotation with Targeted Data Augmentation. IEEE Intelligent Systems.

ICMG: Methodology

Tee, Y. Y., Cheng, D., Shi, Y., Lin, T., & Gwee, B. H. (2023). Integrated Circuit Mask-GAN for Circuit Annotation with Targeted Data Augmentation. IEEE Intelligent Systems.

ICMG: Experimental Results

- Model evaluation is performed on images from an entire metal layer from a microcontroller device.
- There are 230,400 images at (256x256) resolution in the evaluation set.

Method	Number of Labeled Images	Number of Unla- beled Images	Number of Synthetic Images	Pixel- wise Accuracy	IoU	Inference Time per Image (ms)	Circuit Connec- tion Errors [†]
Lin et al. [1]	3,600	_	_	0.9839	0.9438	5.256	304
Hung et al. [2]	3,600	28,800	_	0.9715	0.9279	6.226	204
French et al. [3]	3,600	28,800	_	0.9793	0.9320	7.571	424
Abhishek et al. [4]	3,600	_	3,600	0.9744	0.9312	5.136	286
Proposed ICMG	3,600	—	28,800	0.9816	0.9373	5.549	67
Proposed ICMG (reduced data)	900	_	7,200	0.9802	0.9313	5.373	89
Proposed ICMG (reduced data)	360	_	2,800	0.9814	0.9364	5.352	113

[†] Out of 8,666 total circuit connections.

T. Lin, Y. Shi, N. Shu, D. Cheng, X. Hong, J. Song, and B. H. Gwee, "Deep learning-based image analysis framework for hardware assurance of digital integrated circuits," Microelectronics Reliability 2021.
W. C. Hung, Y. H. Tsai, Y. T. Liou, Y.-Y. Lin, and M. H. Yang, "Adversarial learning for semi-supervised semantic segmentation," in British Machine Vision Conference, 2018.
G. French, S. Laine, T. Aila, M. Mackiewicz, and G. Finlayson, "Semi-supervised semantic segmentation needs strong, varied perturbations," in British Machine Vision Conference, no. 31, 2020.
K. Abhishek and G. Hamarneh, "Mask2lesion: Maskconstrained adversarial skin lesion image synthesis," in International Workshop on Simulation and Synthesis in Medical Imaging. Springer, 2019, pp. 71–80.

Conclusion

- A deep learning-based framework for IC image analysis has been presented. Deep learning models can be effectively applied to retrieve the standard cells and interconnects in IC image analysis, concerning a wide variety of tasks and solutions.
- A major limitation of supervised learning models is their requirements on considerable amount of labelled data. Unsupervised or semi-supervised analysis are promising techniques to address this.
- Integrated Circuit Mask-GAN, a targeted data augmentation technique, has been presented for and demonstrated significant improvements in the circuit annotation task.

Thank You!

Questions?

Contact Me

Email: yeeyang.tee@ntu.edu.sg