
Leveraging FPGA 
Reverse Engineering for 

Secure CAD Flows

Jeff Goeders, Associate Professor
Brigham Young University, Utah, USA



FPGA vendors keep bitstream formats 
proprietary and secret.  

This has historically provided some 
protection against certain attacks (eg IP 
theft)

Recent open-source work has reverse-
engineered several bitstream formats.

This work: How can we leverage these 
known bitstream formats to enhance 
security of FPGA design flows?

FPGA Bitstreams



Project 1: Verifying bitstream-to-netlist equivalence

Project 2: Protecting Encrypted IP

Reilly McKendrick, Keenan Faulkner, and Jeffrey Goeders, “Assuring Netlist-to-Bitstream 
Equivalence using Physical Netlist Generation and Structural Comparison,” International Conference 
on Field-Programmable Technology (FPT), Dec 2023.

Daniel Hutchings, Adam Taylor, Jeffrey Goeders, “Toward Intellectual Property (IP) Encryption from Netlist to 
Bitstream”, ACM Transactions on Reconfigurable Technology and Systems (TRETS), to be published, 2024.



Project 1: Verifying bitstream-to-netlist equivalence

Project 2: Protecting Encrypted IP

Reilly McKendrick, Keenan Faulkner, and Jeffrey Goeders, “Assuring Netlist-to-Bitstream 
Equivalence using Physical Netlist Generation and Structural Comparison,” International Conference 
on Field-Programmable Technology, Dec 2023.

Daniel Hutchings, Adam Taylor, Jeffrey Goeders, “Toward Intellectual Property (IP) Encryption from Netlist to 
Bitstream”, ACM Transactions on Reconfigurable Technology and Systems, to be published, 2024.



Currently, there is no easy way for a designer to figure this out…

Big Picture Goal

RTL Design FPGA CAD Flow

Are these equivalent???

0101010101101
0101010101011
0101011011100
0001001010110
1010101010100
0101010

Bitstream

5



Threat Model: Design is modified maliciously (or 
accidentally) during compilation, bitgen, or post-bitgen.

Possible attack scenarios:
1. Malicious CAD tool.
2. Buggy CAD tools accidentally modify design.
3. Attacker intercepts and modifies bitstream post-

generation.

Possibility of these types of attacks have been 
demonstrated: 
[1] R. S. Chakraborty, I. Saha, A. Palchaudhuri, and G. K. Naik, “Hardware Trojan 
Insertion by Direct Modification of FPGA Configuration Bitstream,” IEEE Design Test, vol. 
30, no. 2, pp. 45–54, Apr. 2013, doi: 10.1109/MDT.2013.2247460.

[2] C. Krieg, C. Wolf, and A. Jantsch, “Malicious LUT: A stealthy FPGA trojan injected and 
triggered by the design flow,” in International Conference on Computer-Aided Design 
(ICCAD), Nov. 2016, pp. 1–8.

Why should someone care?

6



Our Previous Work

Approach #1: Validate a single IP using netlist 
information from Vivado and a commercial formal 
equivalence checking tool.

Hastings, S. Jensen, J. Goeders, and B. Hutchings, “Using physical and functional comparisons 
to assure 3rd-party IP for modern FPGAs,” in International Verification and Security Workshop 
(IVSW), Jul. 2018, pp. 80–86.

H. Cook, J. Arscott, B. George, T. Gaskin, J. Goeders, and B. Hutchings, “Inducing non-uniform FPGA aging 
using  configuration-based short circuits,” ACM Transactions on Reconfigurable Technology and Systems, 
vol. 15, no. 4, 41:1–41:33, Jun. 6, 2022.

Issue: Trusts CAD tool to correctly report design information

Approach #2: Use bitstream-to-netlist tool (Project 
Icestorm) plus a commercial formal equivalence 
checker.

Issue: Scalability is challenging. Formal verification tools can 
have very long run times. (hours for ~4000 LUT design)

This work: Scalable bitstream-to-netlist equivalence checking. Doesn’t trust the CAD tools. 7



Equivalence Flow

Synthesis

Netlist

RTL .bit

Reversed Netlist
(Prj Xray/Fasm2bels)

Implement

8



Post-Synthesis Netlist Post-Bitstream Netlist

Bitstream Equivalence Checking

Why is this hard?
• No signal names
• No instance names
• Inputs reordered
• INIT changed
• Primitives changed 

and combined.
• Routing resources

9



Equivalence Flow

Key Approach:

1. Extract from Vivado the set of all transformations performed on the design during Implementation.

2. Apply these transformations to the netlist, producing a PHYSICAL NETLIST.

3. Perform a structural equivalence comparison between physical netlist and reversed.

Synthesis

Netlist

Phys. Netlist 
Generator

Physical
Netlist

Structural
Compare

Equal?

RTL .bit

Reversed Netlist
(Prj Xray/Fasm2bels)

Place/Route Info

Implement

10



Post-Synthesis LUT Post-Implementation LUT

LUT Pin Reording

11



Example: LUT Routethru

Post-Synthesis Netlist Post-Bitstream Netlist

Nothing 
there!

12



LUTRAMs

Post-Synthesis Netlist Post-Bitstream Netlist



Structural Comparison

Synthesis

Netlist

Phys. Netlist 
Generator

Physical
Netlist

Structural
Compare

Equal?

RTL .bit

Reversed Netlist
(Prj Xray/Fasm2bels)

Place/Route Info

Implement

Result: Fast equivalence checking between FPGA post-synthesis netlist and bitstream 

• Structural graph matching is much 
easier than formal logic equivalence

• Start at I/Os and other unique nodes 
and expand until entire graph matched 



Results:

Runtime  + 
Validation



Project 1: Verifying bitstream-to-netlist equivalence

Project 2: Protecting Encrypted IP

Reilly McKendrick, Keenan Faulkner, and Jeffrey Goeders, “Assuring Netlist-to-Bitstream 
Equivalence using Physical Netlist Generation and Structural Comparison,” International Conference 
on Field-Programmable Technology, Dec 2023.

Daniel Hutchings, Adam Taylor, Jeffrey Goeders, “Toward Intellectual Property (IP) Encryption from Netlist to 
Bitstream”, ACM Transactions on Reconfigurable Technology and Systems, to be published, 2024.



Encrypted IP

FPGA “bitstream encryption” doesn’t solve this problem.  It stops in-field capture of the bitstream.  
It doesn’t prevent the IP customer from viewing the IP.



Problems:
1. Requires new CAD tools

• How can you do CAD on encrypted IP?

2. Requires new FPGA devices
• Perform fine-grained decryption during configuration

Ideal:  IP Encryption Framework



Our goal: Demonstrate an end-to-end 
encryption of third-party IP

Use an existing commercial CAD tool

Use an existing commercial FPGA

Is this even possible?

Proof-of-Concept Tool



Problems:
1. Requires new CAD tools

• How can you do CAD on encrypted IP?

2. Requires new FPGA devices
• Perform fine-grained decryption during configuration

IP Encryption Framework



Encrypt LUTs

Encryption Granularity

Encrypt Tiles

Not possible to encrypt the entire IP.  What can we encrypt and still perform CAD?



Can we use commercial CAD tools to operate on the 
(partially) encrypted design?

What happens when you lie to your CAD tool about your 
design?



Demonstrated CAD Flow

IP Vendor Flow: IP Customer Flow:



We use a custom bitstream format that 
contains a mixture of unencrypted User 
logic and encrypted LUTs.

Plus extra metadata to handle 
optimizations performed by the CAD 
tool on the “fake” (encrypted) logic.

• LUT INIT inflation
• LUT pin reordering
• Fractured LUT combining 

These optimizations are tracked, so they can 
be “redone” during reconfiguration, post-
decryption.

Custom Bitstream: Encrypted Data+



Problems:
1. Requires new CAD tools

• How can you do CAD on encrypted IP?

2. Requires new FPGA devices
• Perform fine-grained decryption during configuration

IP Encryption Framework



• New configuration circuitry is required to hold per-vendor decryption 
keys, and perform fine-grained decryption

• We implement this as a “Static Shell”, with all user logic constrained 
to a reconfigurable partition (e.g. similar to cloud FPGA usage)

Enhanced Configuration Circuitry

Custom Bitstream

User Design
Partition

AES Key

AES Key

IC
AP

UART

Microblaze

Loader Shell



FPGA device must come from a trusted key holder with pre-set eFUSE 
values to decrypt Loader Shell, prevent readback, etc. 

Key Management

This exposes new attack vectors (e.g. side channel attacks, starbleed-like attacks, etc.)
Overall, we have made obtaining encrypted IP netlists much more challenging than with 
existing tools.

User must be prevented from looking inside the FPGA loader shell 
(which contains the IP encryption keys)



Project 1: Verifying bitstream-to-netlist equivalence

Project 2: Protecting Encrypted IP

Questions?

Contact Me: Jeff Goeders, jgoeders@byu.edu 

Reilly McKendrick, Keenan Faulkner, and Jeffrey Goeders, “Assuring Netlist-to-Bitstream 
Equivalence using Physical Netlist Generation and Structural Comparison,” International Conference 
on Field-Programmable Technology, Dec 2023.

Daniel Hutchings, Adam Taylor, Jeffrey Goeders, “Toward Intellectual Property (IP) Encryption from Netlist to 
Bitstream”, ACM Transactions on Reconfigurable Technology and Systems, to be published, 2024.





What trusted tools do we require?
1. A bitstream-to-netlist tool.  

• We use an open-source tool (fasm2bels), but a capable organization (e.g. state actor) may elect to 
make their own.

2. A netlist manipulation tool.

Don’t we trust the commercial CAD tool when asking for the set of 
implementation transformations? What if it maliciously lied?

No! An incorrect set of transformations will simply cause our tool to fail to verify equivalence.

Our netlist transformations don’t change the design functionality, so it would be impossible to 
hide malicious design changes through a false set of transformations.

A malicious list of transformations may cause a false negative comparison, but it’s not possible 
to induce a false positive comparison.

Trust



Can we support any design?  Why not try out very large designs?
• The 3rd party tool for bitstream to netlist conversion does not support all device features.

• Larger designs are more likely to implement these unsupported features.

• Our work is a proof-of-concept.  A production tool would need to have a complete bitstream-to-
netlist tool.

Can this work for other FPGA vendors?
• Using other vendors requires having similar documentation of the bitstream in order to produce 

the reversed netlist.

• CAD tool must expose set of design transformations made during implementation.

Limitations


	Leveraging FPGA �Reverse Engineering for Secure CAD Flows
	FPGA Bitstreams
	Slide Number 3
	Slide Number 4
	Big Picture Goal
	Why should someone care?
	Our Previous Work
	Equivalence Flow
	Bitstream Equivalence Checking
	Equivalence Flow
	LUT Pin Reording
	Example: LUT Routethru
	LUTRAMs
	Structural Comparison
	Results:��Runtime  + Validation
	Slide Number 16
	Encrypted IP
	Ideal:  IP Encryption Framework
	Proof-of-Concept Tool
	IP Encryption Framework
	Encryption Granularity
	Slide Number 22
	Demonstrated CAD Flow
	Custom Bitstream: Encrypted Data+
	IP Encryption Framework
	Enhanced Configuration Circuitry
	Key Management
	Slide Number 28
	Slide Number 29
	Trust
	Limitations

