Leveraging FPGA
Reverse Engineering for
Secure CAD Flows

Jeff Goeders, Associate Professor
Brigham Young University, Utah, USA

BYU Electrical & Computer
Engineering
IRA A. FULTON COLLEGE OF ENGINEERING

BYU Electrical & Computer

IIPGA BitStreams IE?EEEI?I‘S:L?)EEGE OF ENGINEERING

FPGA vendors keep bitstream formats
proprietary and secret.

This has historically provided some
protection against certain attacks (eg IP
theft)

Recent open-source work has reverse-
engineered several bitstream formats.

This work: How can we leverage these
known bitstream formats to enhance
security of FPGA design flows?

BYU Electrical & Computer

Engineering
IRA A. FULTON COLLEGE OF ENGINEERING

Project 1: Verifying bitstream-to-netlist equivalence

Reilly McKendrick, Keenan Faulkner, and Jeffrey Goeders, “Assuring Netlist-to-Bitstream
Equivalence using Physical Netlist Generation and Structural Comparison,” International Conference
on Field-Programmable Technology (FPT), Dec 2023.

Project 2: Protecting Encrypted IP

Daniel Hutchings, Adam Taylor, Jeffrey Goeders, “Toward Intellectual Property (IP) Encryption from Netlist to
Bitstream”, ACM Transactions on Reconfigurable Technology and Systems (TRETS), to be published, 2024.

BYU Electrical & Computer

Engineering
IRA A. FULTON COLLEGE OF ENGINEERING

Project 1: Verifying bitstream-to-netlist equivalence

Reilly McKendrick, Keenan Faulkner, and Jeffrey Goeders, “Assuring Netlist-to-Bitstream
Equivalence using Physical Netlist Generation and Structural Comparison,” International Conference
on Field-Programmable Technology, Dec 2023.

BYU Electrical & Computer

Big Picture Goal Engineering

IRA A. FULTON COLLEGE OF ENGINEERING

0101010101101
0101010101011

VYV LUV LVLVYLLY

1010101010100
0101010

N e

Are these equivalent???

Currently, there is no easy way for a designer to figure this out...

Why should someone care?

BYU Electrical & Computer

Engineering
IRA A. FULTON COLLEGE OF ENGINEERING

Threat Model: Design is modified maliciously (or
accidentally) during compilation, bitgen, or post-bitgen.

Possible attack scenarios:
1. Malicious CAD tool.
2. Buggy CAD tools accidentally modify design.

3. Attacker intercepts and modifies bitstream post-
generation.

Possibility of these types of attacks have been
demonstrated:

[1] R. S. Chakraborty, |. Saha, A. Palchaudhuri, and G. K. Naik, “Hardware Trojan
Insertion by Direct Modification of FPGA Configuration Bitstream,” IEEE Design Test, vol.
30, no. 2, pp. 45-54, Apr. 2013, doi: 10.1109/MDT.2013.2247460.

[2] C. Krieg, C. Wolf, and A. Jantsch, “Malicious LUT: A stealthy FPGA trojan injected and
triggered by the design flow,” in International Conference on Computer-Aided Design
(ICCAD), Nov. 2016, pp. 1-8.

BYU Electrical & Computer

Our Previous Work Engineering

IRA A. FULTON COLLEGE OF ENGINEERING

Approach #1: Validate a single IP using netlist Approach #2: Use bitstream-to-netlist tool (Project
information from Vivado and a commercial formal |lcestorm) plus a commercial formal equivalence
equivalence checking tool. checker. —
" code synthesis ([T s Deien A
(HDL) (Vivado HD) > Pla((izvi‘ dR:)ute (HDL)
: User
Trusted IP (\,/\;:argﬁsd'f: f.:ﬂff(Implementation
Flow Primitives) Flow
N AN Netlist Extraction J
' Xilinx-Mapped M 0
Netlist Netlist
e 2
Comparison | | Cadence Conformal | |
Flow
‘ Conformal Reports Equivalence?]
No Yes
- - | Reversed Netlist
Hastings, S. Jensen, J. Goeders, and B. HUEC‘hi”gS' ”Usi'ng physic.a‘l an.d functional c'omparisons H. Cook, J. Arscott, B. George, T. Gaskin, J. Goeders, and B. Hutchings, “Inducing non-uniform FPGA aging
to assure 3rd-party IP for modern FPGAs,” in International Verification and Security Workshop using configuration-based short circuits,” ACM Transactions on Reconfigurable Technology and Systems
(IVSW), Jul. 2018, pp. 80-86. vol. 15, no. 4, 41:1-41:33, Jun. 6, 2022.
Issue: Trusts CAD tool to correctly report design information Issue: Scalability is challenging. Formal verification tools can

have very long run times. (hours for ~4000 LUT design)

This work: Scalable bitstream-to-netlist equivalence checking. Doesn’t trust the CAD tools.

BYU Electrical & Computer

Equivalence Flow Engineering

IRA A. FULTON COLLEGE OF ENGINEERING

RTL

\ 4
\ 4
\ 4

bit

Synthesis

e — 1 —

Implement

BYU Electrical & Computer
Engineering

Bitstream Equivalence Checking

IRA A. FULTON COLLEGE OF ENGINEERING

Post-Synthesis Netlist

LUT6_2 &
LINIT(64"hOCFAQCFAQCQAOQCOA))
\result_OBUF[14)_inst_i_21_X55Y117_B6LUT_phys
(.I0(opl_IBUF[14]),
.I1(op1_IBUF[22]),
.I2(op2_IBUF[4]),
.I3(op2_IBUF[3]),

.IS(op1_IBUF[30]),

.06(\result_OBUF[14] _inst_i_21 n_0));

LUT6_2

LINIT(64 'hCCCCFOFQAAAAFFOQ))

\result_OBUF[14])_inst_i_17_X55Y117_A6LUT_phys

(.I0(\result_OBUF[14)_inst_i_19_n_0),

I1(\result_OBUF[14])_inst_i_22_n_0),
I2(\result_OBUF[14])_inst_i_20 _n_0),
I3(\result_OBUF[14]_inst_i_21 n_0),
.I4(op2_IBUF[1]),
.IS(op2_IBUF([2]),
.06(\result_OBUF[14]_inst_i_17_n_0));

Post-Bitstream Netlist

.I4(\<constl>), = 1\ | I\ ==por

(* KEEP, DONT_TOUCH, BEL = "B6LUT" =)

LUT6_2 &

JINIT(64'hocfaOcfadc0alcoa)

) CLBLL_L_X36Y117_SLICE_X55Y117_BLUT (
.I0(RIOB33_SING_X105Y100_IOB_X1Y100_I),
.I1(RIOB33_X105Y107_I0B_X1Y108_I),
L.I2(LIOB33_X0Y117_I0B_X0Y118_I),
LI3(LIOB33_X0Y117_I0B_X0Y117_1),
LI4(1'b1),
LIS(RIOB33_X105Y115_I0B_X1Y116_I),
L0S(CLBLL_L_X36Y117_SLICE_XS5Y117_B0S),
L06(CLBLL_L_X36Y117_SLICE_X55Y117_B06)

):

(* KEEP, DONT_TOUCH, BEL = "A6LUT® =)
LUT6_2
JINIT(64'hccccfofoaaaaffoo)

) CLBLL_L_X36Y117_SLICE_XS55Y117_ALUT (
.JO(CLBLM_R_X37Y116_SLICE_X56Y116_A0S),
+J1(CLBLL_L_X36Y116_SLICE_X55Y116_B06),
+I2(CLBLL_L_X36Y116_SLICE_XS5Y116_A06),
LI3(CLBLL_L_X36Y117_SLICE_X55Y117_B06),
.J4(LIOB33_X0Y115_I0B_X0Y115_1I),
.IS(LIOB33_X0Y115_I0B_X0Y116_1),
+05(CLBLL_L_X36Y117_SLICE_X55Y117_A0S),
L06(CLBLL_L_X36Y117_SLICE_X55Y117_A06)
D H

Why is this hard?

No signal names
No instance names
Inputs reordered
INIT changed
Primitives changed
and combined.
Routing resources

Equivalence Flow

BYU Electrical & Computer
Engineering
IRA A. FULTON COLLEGE OF ENGINEERING

\ 4

Implement

\ 4

bit

Reversed Netlist
< LE ‘ .?i ﬁ‘ (Prj Xray/FM

Place/Route INfO |arerreeeess :

\ 4

Physical

RTL > Synthesis
Netlist
‘ —
Phys. Netlist
Generator
Key Approach:

Netlist

T

]

Structural
Compare

Equal?

1. Extract from Vivado the set of all transformations performed on the design during Implementation.

2. Apply these transformations to the netlist, producing a PHYSICAL NETLIST.

3. Perform a structural equivalence comparison between physical netlist and reversed. 10

BYU Electrical & Computer

LUT Pin Reording e
Post-Synthesis LUT Post-Implementation LUT
LUTE tH LUT6 2 #

INIT(64'hEEEEEEEQEEEQEEED)) INIT(64'hFFFOFFFOEEEQCCCO))
\result_OBUF[27] 1n5t_1_1 \result_OBUF[27]_inst_i_1_X57Y127_A6LUT_phys
(.I0(\result OBUF[27] 1 JI0(N\result_OBUF[27] inst_ i 7 n_ 0),
I1(\result OBUF[27]_ I1(N\result OBUF[27] inst 1 4 n @),
.I2(\result OBUF[27]_ I2(\result OBUF[27] inst i 2 n 0),
.I3(\result OBUF[27]_ LI3(N\result QBUF[27] inst 1.3 n 0@),
JI4(N\result OBUF[27] JI4(N\result OBUF[27] inst 1 6. n @)
.I5(\result OBUF[27]_ LI5(N\result OBUF[27] inst 1 5 n @)

.D(FESUlt_DBUF[?]]j! .DE(TESUlt_DBUF[E?]j),

11

BYU Electrical & Computer

Example: LUT Routethru IEPEE—':}L?‘S:E;EEGEOFENGINEERING
Post-Synthesis Netlist Post-Bitstream Netlist
LUT6_2
15
14 4| LUTS
M - S S L
12
Nothing 12 :{1]
there! ’
4] LUTS
0 :2 05
|
10

X10961
12

BYU Electrical & Computer

Engineering
IRA A. FULTON COLLEGE OF ENGINEERING

Post-Synthesis Netlist Post-Bitstream Netlist
RAM32X1S RAM32M
1 ol DIA[1:0] DOA[1:0] b
—{>weLk _ DIB[1:0] DOB[1:0] prm—
— A[4:0] DIC[1:0] DOC[1:0]
— ol DID[1:0] DOD(1:0] -
—>WeLK ADDRA[4:0]
— | — ADDRB[4:0]
i 5 w{ ADDRCI[4:0]
b —
—>WCLK — — ADDRDI[4:0]
w— A[4:0] — WE
P —>WCLK
_)WULI‘\

Al4:0] 10952

X14055

BYU Electrical & Computer

Structural Comparison Engineering

IRA A. FULTON COLLEGE OF ENGINEERING

RTL

\ 4

Synthesis

\ 4

Netlist
‘ R

Reversed Netlist
G LE ‘ —?\ _> (Prj Xray/Fasm2bels I

\ 4

Implement > bit

]

v

Phys. Netlist

Generator

v

(] []
Place/Route Info |qessessennsd 5 o o o
Y ¥ .l bt ®
./.. % ° LI o
- [() o © °
Phy5|.cal P é
Netlist _ 4
\/_— o

Structural graph matching is much
easier than formal logic equivalence
Start at I/Os and other unique nodes
and expand until entire graph matched

Result: Fast equivalence checking between FPGA post-synthesis netlist and bitstream

Results:

Runtime +
Validation

BYU Electrical & Computer
Engineering
IRA A. FULTON COLLEGE OF ENGINEERING

TABLE I: Validated Designs

Design Resources Runtime (s) # Error

Phys. Struct. Injection Runs

#LUTs #FF # CARRY4 # BRAM #LUTRAM # SRL Netlist. Cmp.

stereovision | 13164 11588 2014 0 0 0 87 2374 100
aes128 2790 4480 0 86 0 0 36 42 8 100
riscv_final 1499 1300 44 0 0 0 4.8 1.7 100
cpu8(080 1010 243 86 0 0 0 1.8 27 100
sha 1000 894 56 0 0 0 1.5 34 100
mkSMAdapter4B 987 1126 73 4 0 0 1.1 4.8 100
bubblesort 214 1782 0 0 0 1 1.5 57 100
pid 741 423 0 0 0 0 1.2 i3 100
median T40 125 52 0 0 0 1.2 EN| 100
a25_decode 677 640 0 0 0 0 07 5.0 100
regfile 611 1056 0 0 0 0 37 5.6 100
riscvSimpleDatapath 370 63 28 0 0 0 37 2.5 100
basicrsa 340 459 72 0 0 0 07 1.9 100
hight 502 134 28 0 0 0 07 1.3 100
alu 461 0 20 0 0 0 33 2.6 100
a25_wishbone 422 818 0 0 0 0 0.6 27 100
uart2spi 369 410 6 0 0 0 0.9 1.2 100
quadratic_func 238 118 52 0 0 0 04 1.4 100
ray gentop 221 303 4 0 0 1 0.5 1.4 100
pci_mini 219 333 0 0 0 0 0.6 1.9 100
tiny_encryption_algorithm 200 264 40 0 0 0 0.5 24 100
data_path 179 257 3 0 0 0 0.5 1.6 100
EX_stage 168 38 4 0 0 0 0.4 0.9 100
calc 163 18 12 0 0 0 31 1.3 100
pic 133 77 8 0 0 0 0.4 0.4 100
wh_lcd 87 80 5 0 0 0 0.3 0.5 100
control_unit T8 5 0 0] 0 0.3 0.4 100
a25_coprocessor 74 171 0 0 0 0 0.3 0.6 100
uart 69 137 18 0 0 0 3.0 1.5 100
stereovision 54 118 0 0 0 0 0.1 0.4 100
shifiReg 51 20 0 0 0 0 3.0 1.1 100
UpDownButtonCount 49 24 12 0 0 0 3.0 1.3 100
simon_core 35 27 0 0] 12 0.2 0.3 100
stopwatch 34 52 10 0 0 0 29 1.1 100
stereovision2 28 39 0 0 0 0 0.1 0.3 100
ID_stage 26 73 0 0 0 0 0.2 0.5 100
bed_adder 24 50 5 0 0 0 0.3 0.2 100
uart_rx 20 39 4 0 0 0 0.1 0.2 100
I 19 39 4 0 0 0 2.8 1.3 100
random_pulse_generator 4 33 0 0 0 0 0.2 0.1 100
a25_write_back 1 44 0 0 0 0 0.1 0.4 100
MEM_stage 0 37 0 0 64 0 0.2 0.3 100

BYU Electrical & Computer

Engineering
IRA A. FULTON COLLEGE OF ENGINEERING

Project 2: Protecting Encrypted IP

Daniel Hutchings, Adam Taylor, Jeffrey Goeders, “Toward Intellectual Property (IP) Encryption from Netlist to
Bitstream”, ACM Transactions on Reconfigurable Technology and Systems, to be published, 2024.

Encrypted IP

BYU Electrical & Computer

Engineering
IRA A. FULTON COLLEGE OF ENGINEERING

SoftIP_| | Hard IP
</> DD
N <

r Customer RTL | CAD Tools

B EE

. o

-

Bitstream

IP IP
Config Config

i

FPGA “bitstream encryption” doesn’t solve this problem. It stops in-field capture of the bitstream.

It doesn’t prevent the IP customer from viewing the IP,

BYU Electrical & Computer

Ideal: IP Encryption Framework Engineering

IRA A. FULTON COLLEGE OF ENGINEERING
Hard IP Hard IP
o1 DD,
\

l r r

i A
Customer RTL CAD Tools Custom Bitstream

IP P > IP P
Netlist) | Netlist = 5 Config| | Config
\ J L

.

Problems:

1. Requires new CAD tools
* How can you do CAD on encrypted IP?

2. Requires new FPGA devices
« Perform fine-grained decryption during configuration

Proof-of-Concept Tool

BYU Electrical & Computer
Engineering
IRA A. FULTON COLLEGE OF ENGINEERING

Our goal: Demonstrate an end-to-end
encryption of third-party IP

Use an existing commercial CAD tool

Use an existing commercial FPGA

Toward FPGA Intellectual Property (IP) Encryption from
Netlist to Bitstream

DANIEL HUTCHINGS, Brigham Young University, USA
ADAM TAYLOR, Brigham Young University, USA
JEFFREY GOEDERS, Brigham Young University, USA

Current IP encryption methods offered by FPGA vendors use an approach where the IP is decrypted during the
CAD flow, and remains unencrypted in the bitstream. Given the ease of accessing modern bitstream-to-netlist
tools, encrypted IP is vulnerable to inspection and theft from the IP user. While the entire bitstream can be
encrypted, this is done by the user, and is not a mechanism to protect confidentiality of 3rd party IP.

In this work we present a design methodology, along with a proof-of-concept tool, that demonstrates how
IP can remain partially encrypted through ihe CAD flow and into the bitstream. We show how this approach
can support multiple encryption keys froga different vendors, and can be deployed using existing CAD tools
and FPGA families. Our results do sher=fits apd costs of using such an approach to provide much
greater protection for 3rd party . a7

BYU Electrical & Computer

IP Encryption Framework IEPEE—':}L?SI:E;EEGEOFENGINEERING

Hard IP Hard IP
D1 D ED;
v /

i A
Customer RTL CAD Tools Custom Bitstream

IP P > IP P
Netlist) | Netlist = 5 Config| | Config
\ J L

.

Problems:

1. Requires new CAD tools
* How can you do CAD on encrypted IP?

2. Requires new FPGA devices
« Perform fine-grained decryption during configuration

BYU Electrical & Computer

Encryption Granularity Engineering

IRA A. FULTON COLLEGE OF ENGINEERING

Not possible to encrypt the entire IP. What can we encrypt and still perform CAD?

Encrypt LUTs Encrypt Tiles

BRC

Tl

Toenl [memm

[] Userlogic [J[Encrypted IP Logic [] UserTiles [1] Encrypted Tiles

BYU Electrical & Computer

Engineering
IRA A. FULTON COLLEGE OF ENGINEERING

Can we use commercial CAD tools to operate on the
(partially) encrypted design?

What happens when you lie to your CAD tool about your
design?

BYU Electrical & Computer

Demonstrated CAD Flow Engineering

IRA A. FULTON COLLEGE OF ENGINEERING

IP Vendor Flow: IP Customer Flow:
Synthesized | [_ | [IPPostSynth i) .
ey s P Netlist User RTL Top Module . Synthesized
Design ~{2 . (Vivado :
. 5 2| | (nolUTINIT) | Design
Checkpoint | | &S IP #1 IP #2 .
S&l [wrtinr (No INIT) (No INIT) Checkpoint
AES Encryption Key O"" LIS [Names& \ y
SN J \ Ciphertext y
Implemented Partial
" Loader Bitstream
= g Reconfigurable (Invalid INIT)
- 2 Partition y
o N .
28 'L Checkpoint T
y Custom Bitstream Generator Script
y
4 Custom Bitstream)
. — LUT Metadata
_Partlal LUT INIT Bitstream frame locations,
Bitstream Cyphertext LUT pin order, Vendor ID)
\

Custom Bitstream: Encrypted Data+

BYU Electrical & Computer

Engineering
IRA A. FULTON COLLEGE OF ENGINEERING

We use a custom bitstream format that
contains a mixture of unencrypted User
logic and encrypted LUTs.

Plus extra metadata to handle
optimizations performed by the CAD
tool on the “fake” (encrypted) logic.

« LUT INIT inflation
* LUT pin reordering
* Fractured LUT combining

These optimizations are tracked, so they can
be “redone” during reconfiguration, post-
decryption.

Header Data

Various Config Register Writes

FAR Write

Frame Address

FDR Write

Frame Data

Frame Data

End of Bitstream

Header Data
Various Config Register Writes
FAR Write
Frame Address
FDR Write

Frame Data
LUT Metadata

Frame Data
End of Bitstream

BYU Electrical & Computer

IP Encryption Framework IEPEE—':}S‘SI:E;EEGEOFENGINEERING

Hard IP Hard IP
D1 D ED;
v /

i A
Customer RTL CAD Tools Custom Bitstream

IP P > IP P
Netlist) | Netlist = 5 Config| | Config
\ J L

.

Problems:
1. Requires new CAD tools
* How can you do CAD on encrypted IP?

2. Requires new FPGA devices
» Perform fine-grained decryption during configuration

BYU Electrical & Computer

IRA A. FULTON COLLEGE OF ENGINEERING

Enhanced Configuration Circuitry Engineering

« New configuration circuitry is required to hold per-vendor decryption
keys, and perform fine-grained decryption

« We implement this as a “Static Shell”, with all user logic constrained
to a reconfigurable partition (e.g. similar to cloud FPGA usage)

Custom Bitstream
C I)
4

T UART Loader Shell

Microblaze

User Design _
Partition . L

I(iP

BYU Electrical & Computer
Engineering

Key Management

User must be prevented from looking inside the FPGA loader shell
(which contains the IP encryption keys)

FPGA device must come from a trusted key holder with pre-set eFUSE
values to decrypt Loader Shell, prevent readback, etc.

CFG_AES_Only: Forces the use of AES key stored in eFUSE and disables device readback. This
bit must be set as the FFGA must only accept the Loader bitstream, and not another bitstream
created by the user to access the IP decryption keys.

AES Exclusive: Disables partial reconfiguration from external conliguration interfaces but still
allows partial reconliguration via the ICAP. This bit must also be set for the same safely
concern as the previous bit.

W_EN_B_Key User: Disables programming of AES key. This bit must also be set to prevent the
IP user from overwriting the AES key.

R_EN B _Key, R_EN_B User: Disables reading and reprogramming of AES key.

W_EN_B_Cnll: Disables any [urther changes Lo the eFUSE registers.

This exposes new attack vectors (e.g. side channel attacks, starbleed-like attacks, etc.)

Overall, we have made obtaining encrypted IP netlists much more challenging than with
existing tools.

BYU Electrical & Computer

Engineering
IRA A. FULTON COLLEGE OF ENGINEERING

Project 1: Verifying bitstream-to-netlist equivalence

Reilly McKendrick, Keenan Faulkner, and Jeffrey Goeders, “Assuring Netlist-to-Bitstream
Equivalence using Physical Netlist Generation and Structural Comparison,” International Conference
on Field-Programmable Technology, Dec 2023.

Project 2: Protecting Encrypted IP

Daniel Hutchings, Adam Taylor, Jeffrey Goeders, “Toward Intellectual Property (IP) Encryption from Netlist to
Bitstream”, ACM Transactions on Reconfigurable Technology and Systems, to be published, 2024.

Questions?

Contact Me: Jeff Goeders, jgoeders@byu.edu

BYU Electrical & Computer

Engineering
IRA A. FULTON COLLEGE OF ENGINEERING

BYU Electrical & Computer

Engineering
IRA A. FULTON COLLEGE OF ENGINEERING

What trusted tools do we require?

1. A bitstream-to-netlist tool.

» We use an open-source tool (fasm2bels), but a capable organization (e.g. state actor) may elect to
make their own.

2. Anetlist manipulation tool.

Don’t we trust the commercial CAD tool when asking for the set of
implementation transformations? What if it maliciously lied?

No! An incorrect set of transformations will simply cause our tool to fail to verify equivalence.

Our netlist transformations don’t change the design functionality, so it would be impossible to
hide malicious design changes through a false set of transformations.

A malicious list of transformations may cause a false negative comparison, but it's not possible
to induce a false positive comparison.

BYU Electrical & Computer

Limitations Engineering

IRA A. FULTON COLLEGE OF ENGINEERING

Can we support any design? Why not try out very large designs?
« The 3" party tool for bitstream to netlist conversion does not support all device features.

» Larger designs are more likely to implement these unsupported features.

» Our work is a proof-of-concept. A production tool would need to have a complete bitstream-to-
netlist tool.

Can this work for other FPGA vendors?

» Using other vendors requires having similar documentation of the bitstream in order to produce
the reversed netilist.

» CAD tool must expose set of design transformations made during implementation.

	Leveraging FPGA �Reverse Engineering for Secure CAD Flows
	FPGA Bitstreams
	Slide Number 3
	Slide Number 4
	Big Picture Goal
	Why should someone care?
	Our Previous Work
	Equivalence Flow
	Bitstream Equivalence Checking
	Equivalence Flow
	LUT Pin Reording
	Example: LUT Routethru
	LUTRAMs
	Structural Comparison
	Results:��Runtime + Validation
	Slide Number 16
	Encrypted IP
	Ideal: IP Encryption Framework
	Proof-of-Concept Tool
	IP Encryption Framework
	Encryption Granularity
	Slide Number 22
	Demonstrated CAD Flow
	Custom Bitstream: Encrypted Data+
	IP Encryption Framework
	Enhanced Configuration Circuitry
	Key Management
	Slide Number 28
	Slide Number 29
	Trust
	Limitations

