
MAX PLANCK INSTITUTE
FOR SECURITY AND PRIVACY

THE THREAT OF FPGA
REVERSE ENGINEERING

SIMON KLIX & NILS ALBARTUS

MPI-SP, BOCHUM, GERMANY

O N T H E T H R E AT O F F P G A R E V E R S E E N G I N E E R I N G | S I M O N K L I X & N I L S A L B A RT U S | M P I - S P

RECAP

We reverse engineered an FPGA found in the

iPhone 7

• First comprehensive FPGA reverse

engineering case study on a real-world device

• Started from a bitstream and ended at a high-

level understanding.

RECAP

O N T H E T H R E AT O F F P G A R E V E R S E E N G I N E E R I N G | S I M O N K L I X & N I L S A L B A RT U S | M P I - S P

Research Question I:

What challenges and efforts are entailed with real-world

FPGA reverse engineering in a black-box setting?

Solved the challenges we encountered either

manually or with specific and custom made tooling.

GENERALIZATION

GENERALIZATION OF REVERSE ENGINEERING TECHNIQUES

O N T H E T H R E AT O F F P G A R E V E R S E E N G I N E E R I N G | S I M O N K L I X & N I L S A L B A RT U S | M P I - S P

Research Question II:

To what extent can FPGA reverse engineering be

generalized across architectures and implementations?

We created a general a tool box for FPGA reverse

engineering.

• Consisting of multiple tools for different phases and

challenges of the reverse engineering flow

• Mostly independent of architecture (Xilinx, Lattice,

and extendable)

• Evaluated on set of benchmarks for both

architectures and different functionalities

NETLIST PRE-PROCESSING

O N T H E T H R E AT O F F P G A R E V E R S E E N G I N E E R I N G | S I M O N K L I X & N I L S A L B A RT U S | M P I - S P

LUT

LUT

LUT

LUT

Resynthesis for LUT replacement

• Use existing synthesizers to map LUTs

into basic gates

• Allows for reconstruction of structural

information and improves readabiltiy

• Translates netlists of different

architectures into a similar format

NETLIST PRE-PROCESSING

O N T H E T H R E AT O F F P G A R E V E R S E E N G I N E E R I N G | S I M O N K L I X & N I L S A L B A RT U S | M P I - S P

Resynthesis for LUT replacement

• Use existing synthesizers to map LUTs

into basic gates

• Allows for reconstruction of structural

information and improves readabiltiy

• Translates netlists of different

architectures into a similar format

DATAPATH

O N T H E T H R E AT O F F P G A R E V E R S E E N G I N E E R I N G | S I M O N K L I X & N I L S A L B A RT U S | M P I - S P

New features for DANA:

• Operate on more gates than FFs

• Support for MUX grouping directly in

DANA

DATAPATH

O N T H E T H R E AT O F F P G A R E V E R S E E N G I N E E R I N G | S I M O N K L I X & N I L S A L B A RT U S | M P I - S P

New features for DANA:

• Operate on more gates than FFs

• Support for MUX grouping directly in

DANA

ARITHMETIC STRUCTURES

O N T H E T H R E AT O F F P G A R E V E R S E E N G I N E E R I N G | S I M O N K L I X & N I L S A L B A RT U S | M P I - S P

Carry

Gate

Carry

Gate

Carry

Gate

Carry

Gate

Carry

Gate

Carry

Gate

Structural Candidate Identification:

• Based on FPGA characteristics

• Starting with carry chains

• Build varying structural candidates with

neighboring gates

ARITHMETIC STRUCTURES

O N T H E T H R E AT O F F P G A R E V E R S E E N G I N E E R I N G | S I M O N K L I X & N I L S A L B A RT U S | M P I - S P

Carry

Gate

Carry

Gate

f1 (a, b, c, d, e)

f0 (a, b, c)

Functional Candidate Identification:

• Abstract candidate into Boolean functions

of output nets

ARITHMETIC STRUCTURES

O N T H E T H R E AT O F F P G A R E V E R S E E N G I N E E R I N G | S I M O N K L I X & N I L S A L B A RT U S | M P I - S P

f1 (a, b, c, d, e)

f0 (a, b, c)

Addition-Candidate

Operands:

A: [a, d]

B: [b, e]

Output Order:
[f0, f1]

Control Signals: [c]

Addition-Candidate

Operands:

A: [a, d]

B: [c, e]

Output Order:
[f0, f1]

Control Signals: [b]

Subtraction-Candidate

Operands:

A: [a, d]

B: [b, e]

Output Order:
[f0, f1]

Control Signals: [c]

• Identify possible control signals, input

operands and output order

• Purely based on function analysis

Functional Candidate Identification:

• Abstract candidate into Boolean functions

of output nets

ARITHMETIC STRUCTURES

O N T H E T H R E AT O F F P G A R E V E R S E E N G I N E E R I N G | S I M O N K L I X & N I L S A L B A RT U S | M P I - S P

Addition-Candidate

Operands:

A: [a, d]

B: [b, e]

Output Order:
[f0, f1]

Control Signals: [c]

Addition-Candidate

Operands:

A: [a, d]

B: [c, e]

Output Order:
[f0, f1]

Control Signals: [b]

Subtraction-Candidate

Operands:

A: [a, d]

B: [b, e]

Output Order:
[f0, f1]

Control Signals: [c]

• Check all generated Candidates with an

SMT solver

• Identify possible control signals, input

operands and output order

• Purely based on function analysis

Functional Candidate Identification:

• Abstract candidate into Boolean functions

of output nets

BITORDER PROPAGATION

O N T H E T H R E AT O F F P G A R E V E R S E E N G I N E E R I N G | S I M O N K L I X & N I L S A L B A RT U S | M P I - S P

ADDITION

REGISTER

REGISTER

O[?]

O[?]

O[?]

O[0]

O[1]

O[2]

A[0]

A[1]

A[2]

B[0]

B[1]

B[2]

I[?]

I[?]

I[?]

O[?]

O[?]

O[?]

O[?]

O[?]

O[?]

A[?]

A[?]

A[?]

B[?]

B[?]

B[?]

I[?]

I[?]

I[?]

Working on a netlist with reconstructed

word-level structures

• Registers and Multiplexers are

reconstructed with unordered IO

• Arithmetic structures inherently provide a

bitorder of their multi-bit inputs

BITORDER PROPAGATION

O N T H E T H R E AT O F F P G A R E V E R S E E N G I N E E R I N G | S I M O N K L I X & N I L S A L B A RT U S | M P I - S P

ADDITION

REGISTER

REGISTER

O[0]

O[1]

O[2]

O[0]

O[1]

O[2]

A[0]

A[1]

A[2]

B[0]

B[1]

B[2]

I[0]

I[1]

I[2]

O[0]

O[1]

O[2]

O[0]

O[1]

O[2]

A[0]

A[1]

A[2]

B[0]

B[1]

B[2]

I[0]

I[1]

I[2]

Working on a netlist with reconstructed

word-level structures

• Registers and Multiplexers are

reconstructed with unordered IO

• Arithmetic structures inherently provide a

bitorder of their multi-bit inputs

• Propagate information between pingroups

O N T H E T H R E AT O F F P G A R E V E R S E E N G I N E E R I N G | S I M O N K L I X & N I L S A L B A RT U S | M P I - S P

0

0,2

0,4

0,6

0,8

1

Classified Arithmetic Dataflow Register NMI Bitorder Reconstruction

ibex

icicle

simple_risc_v

canny_edge_detector

fft64

hilbert_transformer

sha256

maggie

RESULTS

Large parts of the netlist can be reverse engineered fully automatically!

THREAT ANALYSIS

THREAT ANALYSIS

O N T H E T H R E AT O F F P G A R E V E R S E E N G I N E E R I N G | S I M O N K L I X & N I L S A L B A RT U S | M P I - S P

Research Question III:

What is the threat potential of FPGA RE?

• From previous research we have shown that netlist

reverse engineering for FPGAs can be scalable

• We analyze the threat potential and compare

FPGA RE to ASIC RE

→ Requires specialized expensive equipment and know-how

→ Takes weeks – months until netlist has been extracted

NetlistDecapsulation Delayering Imaging Image Processing

ASICs:

PHASE 1: NETLIST EXTRACTION

D IFFERENCES BETWEEN FPGA AND ASIC REVERSE ENGINEERING

O N T H E T H R E AT O F F P G A R E V E R S E E N G I N E E R I N G | S I M O N K L I X & N I L S A L B A RT U S | M P I - S P

→ Bitstream has to be extracted (minutes – days)

→ If database is available, the conversion only takes minutes

NetlistBitstream Extraction Bitstream Conversion

…0101…

FPGAs:

PHASE 1: NETLIST EXTRACTION

D IFFERENCES BETWEEN FPGA AND ASIC REVERSE ENGINEERING

O N T H E T H R E AT O F F P G A R E V E R S E E N G I N E E R I N G | S I M O N K L I X & N I L S A L B A RT U S | M P I - S P

Xilinx:

• Project X-Ray: 7-Series

• Project U-Ray: UltraScale(+)

Lattice:

• Project Trellis: ECP5 Series

• Project IceStorm: ICE40 Series

Intel:

• Mistral: Cyclone V

OPEN-SOURCE BITSTREAM DATABASES

O N T H E T H R E AT O F F P G A R E V E R S E E N G I N E E R I N G | S I M O N K L I X & N I L S A L B A RT U S | M P I - S P

QUICKLOGIC: OPEN-SOURCE FPGAS

• QuickLogic is the first FPGA vendor to switch to 100%

open-source software and hardware solution for some

FPGA devices

• Databases have to be made available somewhere and can

be easily accessed

O N T H E T H R E AT O F F P G A R E V E R S E E N G I N E E R I N G | S I M O N K L I X & N I L S A L B A RT U S | M P I - S P

• Not available for every device, or…

• Xilinx:

• 6-Series:

− Several side-channel attacks demonstrated

• 7-Series:

− Completely broken due to protocol error (StarBleed)

• UltraScale(+):

− Partial break of encryption, if not properly configured

(StarBleed-NG)

− RSA Authentication broken (JustStart)

BITSTREAM ENCRYPTION

O N T H E T H R E AT O F F P G A R E V E R S E E N G I N E E R I N G | S I M O N K L I X & N I L S A L B A RT U S | M P I - S P

PHASE 2: NETLIST ANALYSIS

D IFFERENCES BETWEEN FPGA AND ASIC REVERSE ENGINEERING

FPGA ASIC

• Error free netlist can be extracted

➢ Enables different analysis methods that rely

on exact representation (SMT, simulation, …)

• Error free netlist are unlikely to be extracted

➢ Rely on fuzzy methods

• Not many synthesis tools and gate libraries

➢ Reuse family specific tools

• Large variety of tools and gate libraries

➢ Tools must be adjusted more often

• Blocks, like DSPs and (B)RAMs, are already

present in netlist

• Blocks have to be reconstructed

• Netlist can change over time (dynamic

reconfiguration) → hard to analyze
• Netlist is static

O N T H E T H R E AT O F F P G A R E V E R S E E N G I N E E R I N G | S I M O N K L I X & N I L S A L B A RT U S | M P I - S P

• FPGAs face a different kind of attacker regarding RE

• ASICs: Attackers with vast resources (nation-state actors, large

companies, specialized labs…)

• FPGAs: Attackers with limited resources (hobbyist, university

researchers, …)

• Combination of easier netlist extraction + readily deployable

tools and algorithms

→ More acute danger for IP implemented on FPGAs

→ Manipulations can be conducted

THREAT POTENTIAL AND CONSEQUENCES

T H E PA I N F U L L I F E O F A H A R D W AR E R E V E R S E E N G I N E E R | J U L I A N S P E I T H & N I L S A L B A RT U S | M P I - S P

Obvious solution:

• Develop good bitstream encryption

• However, bitstream encryption has failed many times in the past…

Fallback protection mechanisms:

• Netlist obfuscation:

• Has been applied in the software world for many years

• Strong obfuscation can use FPGA specific features (like reconfigurability),

but should also focus on making RE as hard as possible on gate-level

reverse engineering

ADVANCED PROTECTION METHODS

T H E PA I N F U L L I F E O F A H A R D W AR E R E V E R S E E N G I N E E R | J U L I A N S P E I T H & N I L S A L B A RT U S | M P I - S P

MAX PLANCK INSTITUTE
FOR SECURITY AND PRIVACY

Any Questions?

O N T H E T H R E AT O F F P G A R E V E R S E E N G I N E E R I N G | S I M O N K L I X & N I L S A L B A RT U S | M P I - S P

